

メンタルビジョン® エビデンス例

パフォーマンス(学力・スポーツ)

Rayner et al., 2006

研究内容: 眼球運動が読解理解に直結する。

つながり:学習では読解力向上につながり、スポーツでは視線制御が照準の

正確性やターゲット切替スピードを高める。

Wang et al., 2021

研究内容:空間認知が算数・読解を介して学力全体に寄与する。

つながり: 学力面では論理的思考や計算力を支え、スポーツでは戦術理解や

状況判断の速さに直結する。

Karolinska研究所, 2021(17,000人調査)

研究内容:空間認知トレーニングにより算数学習が有意に向上する。

つながり:学習の問題解決力を高め、スポーツでは戦術的思考やポジショニング

の精度を上げる。

Aronen et al., 2005

研究内容:ワーキングメモリ能力が学業成績を規定する。


つながり:学習では暗記や応用問題に有効で、スポーツでは複数の戦術や動き

を同時に処理する力を高める。

© Je respire Inc. All Rights Reserved.

メンタル(安定・レジリエンス)

研究内容: 前頭前野活動と眼球運動が関連している。

つながり:学習では集中力維持を助け、

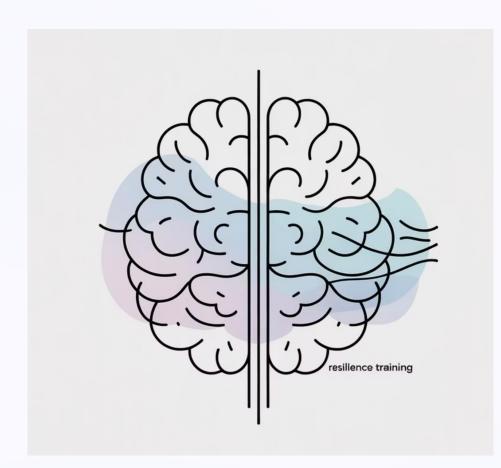
スポーツではプレッシャー下での冷静な判断につながる。

研究内容:ストレス時には視野が狭まり、処理効率が低下する。

つながり: 学習では試験不安への耐性を支え、スポーツでは緊張下でも

広い視野を保ちプレーを安定させる。

Pickering et al., 2022


研究内容:ワーキングメモリと不安・抑うつに関連がある。

つながり:学習では不安に流されず集中でき、 スポーツでは試合中の安定した判断を支える。

Optimism & Anxiety, 2015

研究内容: 前頭前野の体積とレジリエンス・感情調整が関連する。

つながり:学習では困難に粘り強く取り組む力を支え、 スポーツでは失敗や敗北からの立ち直りを助ける。

社会性(コミュニケーション・対人関係)

Barendse et al., 2018

研究内容:空間認知の偏りが自己効 力感・自尊感情に影響する。

つながり:学習では学習意欲を高め、 スポーツでは積極的な プレー姿勢につながる。

Jia et al., 2024

研究内容:ワーキングメモリが高い人 は社交性も高い。

つながり:学習では協働学習を支え、 スポーツではチームメイトとの 連携力を高める。

Tanaś & Szarek, 2021

研究内容: 視点変換力が高い人は 共感力も高い。

つながり:学習では他者理解や 協働を促し、スポーツでは チーム戦での連携を強化する。

Liu et al., 2024

研究内容: 視線パターンが協調性を 予測する。

つながり:学習では授業での 協調的行動を支え、 スポーツでは非言語的な視線共有に よるチームワークを強化する。

© Je respire Inc. All Rights Reserved.

視覚機能	仕事・学力との関係	メンタルとの関係	社会性・対人関係との関係
眼球運動	読解力・理解力に影響 (Rayner et al., 2006) 視線のズレが多いと作業効率が低下 (Holmqvist et al., 2011)	前頭前野の活動に影響 (Baek et al., 2019) 不安や衝動性と相関 (Wang et al., 2023)	視線パターンが 協調性・対人理解と関連 (Liu et al., 2024)
視野	柔軟な対応力 (Krawczyk et al., 2011) 注意力と成績に関連 (Tsukada et al., 2022)	情報を統合する力、柔軟な思考 (Chiew & Braver, 2011) ストレス時に視野が狭くなり 処理力低下 (Oka et al., 2018)	視野の使い方が社会的行動や性格と関係する (Xu et al., 2023) 社会的孤立や抑うつと関連 (Shapiro et al., 2020)
空間認知	複雑なタスク遂行力と関連 (Hegarty et al., 2006) 数学・読解力と関連 (Wang et al., 2021)	空間認知の偏りは 自己効力感や自尊感情に影響 (Barendse et al., 2018)	視点変換能力が高いと共感力が高い (Tanaś & Szarek, 2021) 時間管理能力との関連 (Logan & Cowan, 1984)
ワーキング メモリ	注意の持続・切り替えに関係 (Kane & Engle, 2003) 成績はワーキングメモリと 有意に相関 (Aronen et al., 2005)	不安・抑うつと相関 (Pickering et al., 2022) 感情コントロールとの関連 (Schmeichel et al., 2008)	WM が高い人は社交性が高い (Jia et al., 2024) 会話中の文脈保持力と社会性に関係 (Meyer et al., 2012)